# Day 134: Problems, Mistakes Whiteboarding, & PhET Limiting Reactants

I had a sub for half the day today, so only saw two of my sections.

AP Physics 1: Problems

Students worked on some problems with angular acceleration. I was at school for my smaller section, and the problems went very smoothly. They worked very independently and I overheard a lot of great discussion and connections to linear motion.

Physics: Mistakes Whiteboarding

I was at school for my only section, so we did some mistakes whiteboarding with Thursday’s problems. Students had some great mistakes and great discussion about the problems. One of the interesting things is when students were asked to sketch a v-t graph and divide it into sections, most groups did before, during, and after, mirroring the way we’d used velocity vs. time graphs during momentum transfer (inspired by Brian Frank). Asking them to tell me about what was happening to the box during each phase was pretty effective at shifting them.

Chemistry Essentials: PhET Limiting Reactants

I was gone for both sections of this class, so it was a great day for students to use PhET to introduce limiting reactants. My co-teacher sent me a message that the kids who got started got the ideas pretty quickly, but a lot had trouble getting started. The para who supports the class was also out today, so I think some students felt like they didn’t have the support they needed; I need to keep working on how to support my chem students in developing independence in the classroom.

# Day 133: Goal-less Problem, Forces Revisited, &

AP Physics 1: Goal-less Problem

We started with some mistakes whiteboarding of yesterday’s problems, which went very quickly and smoothly thanks to the connections my students were making to linear motion. Afterward, I gave them a goal-less problem for accelerated circular motion, and those connections continued to serve students well

Physics: Forces Revisited

We’d originally planned on taking a few days to close out the mechanics part of the course after oscillating springs, but the other physics teacher and I both forgot. Now that we’ve done what we’re going to with mechanical waves, we decided now would be a good time. Students worked on some problems revisiting the links between force, motion and other concepts from this year. There was lots of good discussion as they worked.

Chemistry Essentials: Gallery Walk

We did a gallery walk of some stoichiometry problems. Students have been doing well with the problems and seem to understand WHY they are doing the math they are, which I’m really excited about. I’m thinking about switching to BCA tables in the future; I need to spend some time trying problems with them. We’ll be starting work on some curriculum revisions for the course next year, and that might be a good time to take a closer look.

# Day 132: Angular Motion Representations, Whiteboarding, & Stoich Problems

AP Physics 1: Angular Motion Representations

We started by discussing yesterday’s activity to introduce angular velocity; there was some great debate about which dot on the disk was moving the fastest, which lead exactly where I wanted it to. Afterward, students worked on some problems translating between different representations of angular motion. Students fell very easily back into the kind of thinking we’d done with linear motion, which made the problems a breeze.

Physics: Whiteboarding

We finished going over the standing wave problems and took a quiz on the topic.

Chemistry Essentials: Stoichiometry Problems

Students worked some stoichiometry problems that included polyatomic ions. Most students are doing very well with the problems, which has me very optimistic about tomorrow’s quiz.

# Day 131: Pivot Angular Motion, Whiteboarding, & Pivot Stoich

I am a part of the Pivot Interactive’s Chemistry Fellows program.

AP Physics 1: Pivot Interactives Angular Motion

As students finished their torque quiz, I had them use Pivot Interactives to look at the motion of a spinning disk and come up with two different answers to which dot on a spinning disk is moving the fastest. Tomorrow, we’ll use those two answers to get into angular velocity vs. tangential velocity.

Physics: Whiteboarding

We spent some time whiteboarding yesterday’s problems. Students resisted drawing the diagrams for standing waves, but, once they got the diagrams, they were able to solve the problems.

Chemistry Essentials: Pivot Interactives Stoichiometry

Students used Pivot Interactives to compare their prediction for how much hydrogen gas should be produced in a reaction to how much was actually produced. I ran into an issue where a few students were very insistent that a prediction is a guess, so their calculation could not be a prediction. I didn’t have a great response in the moment aside from in science, a prediction should have something to back it up, which can be a calculation.

Another hurdle I ran into today is I have one section where a lot of students really resist talking to their group members, and the computers made it easier for them to work in isolation. As a result, I realized partway through the hour I was frequently answering the same questions multiple times with a given group and I was helping individual students with portions of the activity their partners knew how to do. I need think about how I can help my students have more productive collaboration within their group.

# Day 125: Assessment & Problems

AP Physics 1: Assessment

Students took their central net force quiz. Most seemed to feel pretty good about it, even though we moved through the content quickly.

Physics: Wave Problems

Students worked on problems using what we’ve learned this week. The problems went very smoothly.

Chemistry Essentials: Molar Mass Problems

Students worked on some problems combining molar mass with balancing chemical reactions.

# Day 124: Gallery Walk, Board Meeting, & Mistakes Whiteboarding

AP Physics 1: Gallery Walk

Students did a gallery walk of some problems dealing with central net force and universal gravitation. There was a lot of good discussion as students worked on their problem, but I’m not sure how much students looked at the other problems.

Physics: Board Meeting

We had a board meeting for the snakey spring lab looking for a relationship between wavelength and frequency.

This group used floor tiles as their distance measurement

Chemistry Essentials: Mistakes Whiteboarding

Students worked some problems translating between molar mass and moles of a substance, then did some mistakes whiteboarding to go over the problems.

# Day 123: Board Meeting, Snakey Springs, & Molar Mass

Yesterday we had ACT testing for juniors. Seniors had an off-campus learning day.

AP Physics 1: Central Net Force Board Meeting

For yesterday’s off-campus learning day, my students finished collecting data in Pivot Interactives on central net forces. I really enjoyed the discussion of the force vs. mass graphs, when the class realized the units on the slope were the units on acceleration, so we had F=ma.

Physics: Snakey Springs

Students used the snakey springs to collect data on a relationship between frequency and wavelength for standing waves.

Chemistry Essentials: Molar Mass

Students used nuts, bolts, and washers to represent different elements in order to discover how to find the molar mass of a compound. Afterward, they tried extending what they’d found to actual compounds. Not only were they very successful at extending their results, their work represented different ways of thinking about polyatomic ions, which was cool.